

MPPT Solar Light

D/N: WAS-20C1EN

Introduction

Solar lights utilise solar energy as their energy source which have their battery packs charged using a photovoltaic panel. Traditionally solar lights usually adopt Schottky buck direct charging, resulting in lower charging power and less solar energy utilisation. These advanced solutions use PWM for charging control. By adding an MCU to manage the lithium battery charging, the charging power can be adjusted to provide energy improvements but still not reaching the maximum point. However, MPPT (Maximum Power Point Tracking) is a charging mechanism which has the ability to optimise the disadvantages mentioned above.

Holtek's MPPT charging solar light solution uses a combination of a battery management MCU, the BP45FH4NB, and a low-power PIR module, the BM22S4221-1. The BP45FH4NB includes two high voltage I/Os which can directly drive MOS transistors and multiple operational amplifiers and comparators for voltage/current detection and protection. Efficient solar charging with a tracking efficiency of up to 98% can be achieved using an MPPT algorithm. The BM22S4221-1 module is composed of a BA45F6622 main control MCU, an optical lens and a passive infrared sensor, with low power consumption and an internal software filtering algorithm to implement a sensitive human body sensing function.

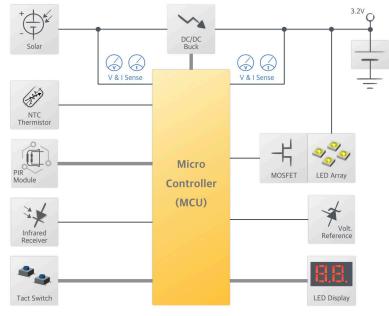


Figure 1. Application Block Diagram

Application Areas

Solar light charging, energy storage sensor lights.

Solution Characteristics

1. Simplified components: integrated level shifted output pins, over/under voltage and over current protection functions

The BP45FH4NB provides two level shifted output pins which can directly drive the high-side PMOS and low-side NMOS transistors. An over current protection function and an over/under voltage protection function are also provided to ensure battery charging/discharging safety.

2. Efficient charging management: MPPT charging, charging power optimisation, solar energy utilisation optimisation

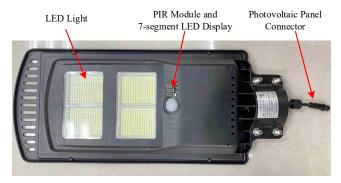
The MPPT controller can detect the voltage and current of the photovoltaic panel in real time. It can therefore track the maximum power using MCU calculations and adjust the operating voltage of the photovoltaic panel allowing it to operate at its point of maximum power in the present environment to charge the lithium battery pack. Compared with traditional solar controllers, this method creates a way of achieving higher photovoltaic panel power efficiency.

Operating Principles

Solar lights are mainly composed of a photovoltaic panel, a controller, a lithium battery pack and LEDs. The photovoltaic panel is used to convert light energy into electricity. The controller uses a photovoltaic panel as its energy input source and a lithium battery pack for energy storage. The lithium battery is then used to drive the LEDs.

The MPPT method will detect voltage and current using a controller. It will calculate the output power of the photovoltaic panel and adjust the duty cycle of the MOSFET to change the output current and voltage of the photovoltaic panel accordingly. By measuring and calculating changes in the photovoltaic panel's power and voltage before and after the current changes, the next cycle changes can be determined. If the changes are moving in the right direction, then the photovoltaic panel output power will be increased. Here the changes will continue in the same direction for the next cycle. However, if the changes move things in the wrong direction, then change to the opposite direction. This procedure of changes and observations should continue until the output power of the photovoltaic panel reaches its maximum point.

The human body sensing module generates a trigger signal when a human body approaches which allows the controller to automatically turn on the light.


Functional Description

Solution Features

- Lithium battery parameter: 20000mAh@3.2V, four single-cell batteries in parallel
- Charging voltage: DC 4~7V uses a photovoltaic panel as the power supply
- Charging current: up to 6A
- Charging power control: MPPT power tracking
- MPPT tracking efficiency: up to 98%
- Control method: MCU software controlled MPPT power tracking
- Remote control: infrared remote control
- Human body sensing: PIR
- PIR sensing distance: 10m

Solution Functions

The physical product is shown in Figure 2, 3 and 4.

Main Control Board Lithium Battery Pack

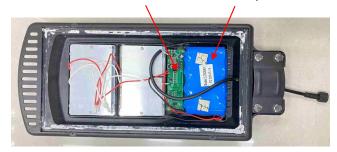


Figure 2

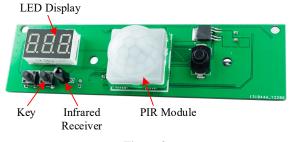
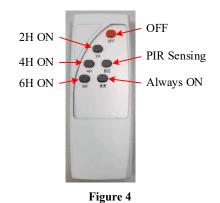



Figure 3

WAS-20C1EN V1.10

This product can illustrate a working comparison between MPPT charging and buck direct charging. The advantages of the MPPT charging can be seen intuitively due to a greater charging power and a higher solar ultilisation rate.

This design includes an operating mode and a demonstration mode, where the operating status is displayed using a 3-digit 7-segment LED display and the operating parameters are displayed using a 3-digit 7-segment LED display. The detailed operating steps are provided below. Note that the information shown by the LED displays correspond to the present operating state which is set by Key1, Key2 and remote control. Charging mode is set by keys, lighting mode is set by remote control.

1. Master Switch Key

The master switch key is located on the front side of the LED. It is used to turn on/off the lithium battery circuit. The lithium battery can be charged or discharged only after the master switch key is turned on. After turning on the key and powering on, the system defaults to the MPPT charging mode. In this condition, the LED displays 1 which indicates that the system is in the charging operating mode.

2. Lighting Mode Switching

When using a remote control for lighting mode switching, the switching action is confirmed if no more actions take place within a 0.5s time period. The LED will display the system operating status after the lighting mode has been switched. There are six lighting modes in total, which can be cycled through using remote control and which correspond to the remote control keys one by one, as shown in the table below.

Mode	Lighting Time	LED Display
PIR Sensing	Triggered by PIR sensing, 15 seconds each time	SEN
Timing1	Switch to PIR sensing mode after 2 hours lighting	2H
Timing2	Switch to PIR sensing mode after 4 hours lighting	6H
Timing3	Switch to PIR sensing mode after 6 hours lighting	6H
Always On	Always On	ON
Always Off	Always Off	OFF

Table 1

After a lighting mode has been confirmed, the LED display will cycle through the system operating status, photovoltaic panel output voltage, battery pack voltage and battery pack discharging power.

3. Charging Mode Switching

After entering the demonstration mode using Key1 and Key2, there are two sub-modes. MPPT charging mode is switched by Key1 and photovoltaic panel buck direct charging mode is switched by Key2, as shown below.

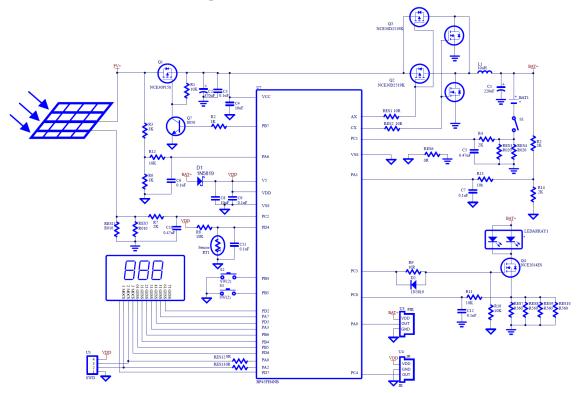
Mode	LED Display
MPPT charging	1
Photovoltaic panel buck direct charging	2

Table 2

For these two modes, the LED display will cycle through the system operating status, photovoltaic panel output voltage, battery pack voltage, photovoltaic panel output power, battery pack absorbed power and conversion efficiency of the system buck topology. The remote control can be used to exit the charging mode and to enter the lighting mode.

The comparison results of the display contents of the Schottky buck direct charging and MPPT charging shows that the former charging mechanism reduces the photovoltaic panel output voltage to a level near the battery pack voltage. Although this has a high conversion efficiency, it results in a small amount of absorbed power. However, the MPPT charging mechanism makes the photovoltaic panel output voltage vary around a certain value, resulting in a larger photovoltaic panel output power and battery pack absorbed power.

This proves that MPPT charging can make greater use of the photovoltaic panel output power to implement a maximum power tracking function. When tested using solar simulators, the MPPT efficiency of this kind of solar light can be up to 98%, which is above the average of MPPT products on the market.


Solution Design Description

This solution uses the BP45FH4NB as the master MCU, providing a program memory capacity of 4K, 21 bidirectional I/O ports, multiple timer modules, high voltage output pins for directly driving MOS transistors and an integrated LDO. With regard to analog features, the device includes a multichannel 12-bit A/D converter, two over current protection functions and an over/under voltage protection function.

The solution is composed of the BP45FH4NB main control board and the PIR module, among which is the BA45F6622 module application circuit. The following section will focus on the main control board introduction.

Hardware Description

Figure 5. Main Control Circuit Diagram

- 1. The solar light uses the MPPT principle for lithium battery pack charging. The MPPT controller, which is implemented using the BP45FH4NB as shown in Figure 5, detects the photovoltaic panel voltage via the PA6 pin and detects the current via the PC2 pin in real time. This allows tracking of the photovoltaic panel maximum power using MCU calculations. The controller adjusts the PWM (AX and CX outputs) of the buck topology to make the photovoltaic panel always operate at its maximum output power point. The MPPT controller can also detect the voltage and current of the lithium battery pack in real time. When the photovoltaic panel's maximum output power exceeds the lithium battery pack's maximum receiving power, the battery pack will be charged using the latter's power value.
- 2. Human body sensing is implemented by the BM22S4221-1 PIR module as shown by U2 in Figure 5. The human body infrared detection digital module is based on the pyroelectric principle. This module has low power consumption, a UART communication interface as well as an internal software filtering algorithm to improve the PIR sensor's reliability. It can be applied to a wide application range including smart home appliances, monitoring systems and basic security detection, etc. When a human body near the solar light is detected, a trigger signal will be generated to automatically turn on the light.

The BM22S4221-1 module in this solution operates by generating an alarm signal. Its STATUS pin, which corresponds to the OUT pin in U2, will output a high level for 3s when a human body is detected or output a constant low level if no human body is detected.

3. The human machine interface includes keys, LED display and infrared remote control. The keys and remote control are used to set the solar light operating mode such as light always off, light

always on, light periodic on/off, human body detection triggered on/off, etc. The LED display shows the solar light operating parameters including battery voltage, battery current, charging power, charging efficiency, etc.

Layout and Hardware Considerations

Figure 6 and Figure 7 show the front and back sides of the PCB layout of the main control board.

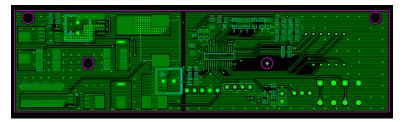


Figure 6

Figure 7

PCB BOM List

Bill of Materia	uis		Bill of Materials For PCB Docu		-
Source Data From:		MPPT_LIGHT_V	OL2.0.sch		
Project:		MPPT_LIGHT_B	P45FH4NB	_	
/ariant:		None			
Creation Date:	2022/1/4	上午 11:02:11			
Print Date:	30-Aug-22	1:53:57 PM	-		
-nni Date.	30-Aug-22	1.55.57 FM	_		
Designator	Comment	LibRef	Footprint	Description	Quantity
D1,D2	1N5819	1N5819	SOD-323	Schottky diode	
J1	BP45FH4NB	BP45FH4NB	SSOP_28PIN_150MIL_0.635PITCH	мси	
(2	BUTTON	BUTTON	BUTTON_2PIN	KEEP BUTTON	
C9	CAP	220uf	CAP+	Capacitor	
C4	CAP	470uf	CAP+	Capacitor	
C1,C3,C6,C8,C12,C13	CAP	0.1uf	0603	Capacitor	
C2,C10	CAP	0.47uf	0603	Capacitor	
05,07	CAP	10uf	0603	Capacitor	
NEC	HDR3X1	NEC	REMOTE	Header, 3-Pin	
SWD	HDR4X1	SWD	SIP4	Header-4PIN	
PIR	HDR_5X1	PIR	PIR	Header, 5-Pin	
K1,K3	KEY1	KEY	BUTTON	Header, 5-Pin	
.1	L	10uH	13_13	Inductor	
21	NCE2014ES	NCE2014ES	SOIC-8_150mil	N-Channel Power MOSFET	
Q3,Q5	NCE30D2519K	NCE30D2519K	TO252-4L	P&N Channel Power MOSFET	
22	NCE30P15S	NCE30P15S	SOIC-8_150mil	P-Channel Power MOSFET	
R7	NTC	10K	SIP2	10K NTC	
BAT+,BAT-,LED+,LED-,PV+,PV-	P	P	PAD_SMD_RECTANGLE	PAD, Cathodic line	
R24,R27,R28	RES	0R	0603	Resistor	
R1,R6,R15	RES	10K	0603	Resistor	
R9,R11,R16	RES	10R	0603	Resistor	
R4,R20,R21	RES	10k	0603	Resistor	
R2	RES	1K	0603	Resistor	
323	RES	1K	0603	Resistor	
R3,R10,R25,R26	RES	2K	0603	Resistor	
322	RES	3K	0603	Resistor	
R5,R8	RES	R010	RES_2010	Resistor	
R12,R13	RES	R020	RES_2010	Resistor	
R14,R17,R18,R19	RES	R560	RES_2010	Resistor	
24	S8050	S8050	SOT-23	NPN Bipolar Transistor	
J2	SEGMENT3	SEGMENT	SEGMENT	Digital tube	
Approved		Notes			

Table 3. Main Control Board BOM List

Software Description

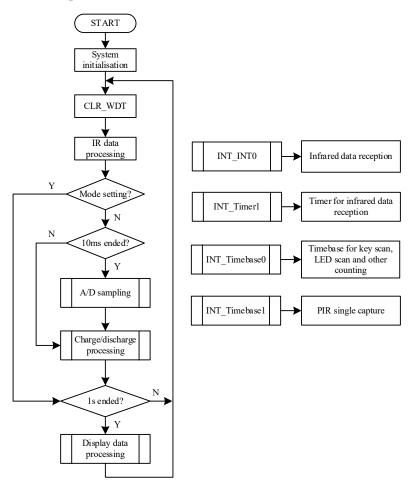


Figure 8. Main Program Flowchart

Initialisation

After the batteries are connected for the first time, the program will first initialise some default data, mainly the system register configuration and the LED lighting mode setting, etc., for which no initialisation will be repeated afterwards.

Main Loop

- In the main loop, the program will analyse the IR infrared remote control signal and execute the corresponding action.
- Execute a key scan operation every 5ms and act accordingly when a key is pressed.
- An infrared signal or key signal will trigger the system to enter the setting mode. If no new signal is received within 0.5s, confirm the present signal command and then exit the setting mode.
- Execute A/D sampling of the voltage and current every 10ms and determine whether an over voltage or over current condition has occurred.
- Execute charging if the system input voltage meets the requirement
- Display the system operating parameters every 1s which include operating mode, voltage, current, etc.

A/D Sampling

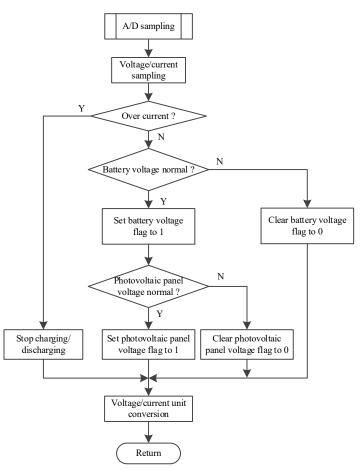


Figure 9. A/D Sampling Subroutine Flowchart

The A/D sampling subroutine is used to sample the voltage and current values of the photovoltaic panel and battery, judge abnormalities and perform a unit conversion on the values. The over current threshold value is 6A, the normal voltage range of the battery is $2V\sim3.65V$ indicated by the f_bat_vol_ok flag, and the normal voltage range of the photovoltaic panel is $3V\sim10V$ indicated by the f_pv_vol_ok flag.

Charge/Discharge Processing

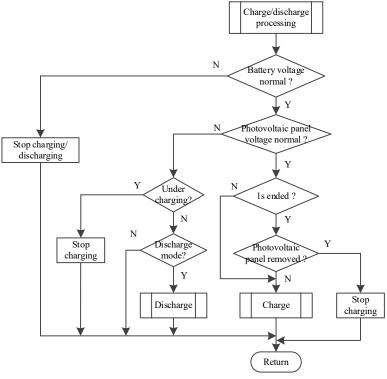


Figure 10. Charge/Discharge Subroutine Flowchart

The charge/discharge processing subroutine executes a charge or discharge operation according to the external conditions and then executes this based on the mode setting.

Charge

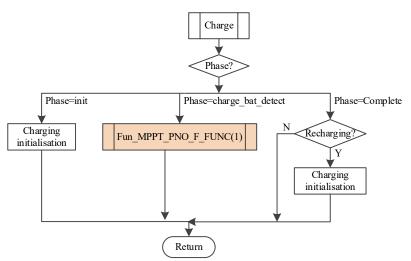


Figure 11. Charge Subroutine Flowchart

There are three charging methods which are MPPT charging, direct charging, and charging while discharging. The charging mode setting can only be set via keys. The MPPT library will select appropriate charging power within the set battery voltage and charging current limit. The battery will stop charging and indicate that it is fully charged when the charging current reduces to a level

below the cut-off charging current or when the battery voltage is higher than 3.65V. The battery will be recharged if the voltage reduces to a value below 3.5V after being fully charged. Before the lithium battery charging power reaches its maximum limit, the MPPT power tracking function is used to track the photovoltaic panel's maximum power for lithium battery charging.

Discharge

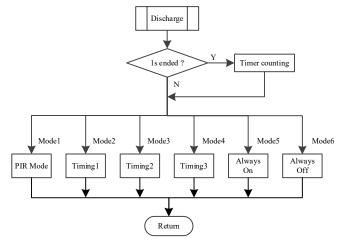


Figure 12. Discharge Subroutine Flowchart

There are six discharging modes including the PIR mode, three timing modes, always on mode and always off mode, which are set by the infrared remote control. In the PIR mode, which occurs during night time, that is when the photovoltaic panel voltage is lower than 3V, the PIR module will turn on the light for 10s when it detects a human body approaching. The 10s countdown will be refreshed each time a PIR trigger signal is generated. In the timing modes the light will be turned on for a fixed time of 2, 4 or 6 hours automatically during night time. The light will remain on in the always on mode and remain off in the always off mode.

Key Scanning

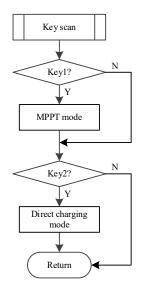


Figure 13. Key Scanning Subroutine Flowchart

MPPT mode is switched by Key1 and direct charging mode is switched by Key2.

WAS-20C1EN V1.10

Interrupt Functions

The PIR module output signal is polled by the Timebase interrupt where a high voltage will trigger the lighting action.

The infrared remote control data is determined using the timing length based on Timer1 and this data is read upon the receipt of an INT0 capture edge. The six keys of the remote control correspond to the six operating modes (Mode1~Mode6) in the discharge flowchart.

Timebase0 is a timer used for key scanning, the LED display scan and other functions.

MPPT Library Description

1. Resource Utilisation

The MPPT Library for the P&O (Perturbation and Observation) method occupies 0.5K words of ROM and 24 bytes of RAM.

2. Parameter Description

Parameter Name	Parameter Name Description			
MPPT_Duty_sum	Total number of duty levels	-		
MPPT_Duty_min	Duty lower limit	-		
MPPT_Duty_max	Duty upper limit	-		
MPPT_CHG_BATVMax	Maximum MPPT battery voltage value	10mV		
MPPT_CHG_BATVMaxAdjust	Maximum MPPT battery voltage ripple value	10mV		
MPPT_CHG_BATI_Min	Minimum MPPT charging current value	10mA		
MPPT_CHG_BATI_MaxAdjust	Maximum MPPT battery current ripple value	10mA		
MPPT_PV_V_min	Minimum solar panel voltage value	10mV		
MPPT_PNO_Time	Timing for re-perturbation	Library calling cycle		

Table 4

3. Variable Description

Global Variable	Туре	Description	Unit
pv_V	unsigned int	Solar panel voltage	10mV
Bat_I	unsigned int	Battery current	10mA
Bat_V	unsigned int	Battery voltage	10mV
BAT_I_max_Duty	unsigned char	Maximum battery charging duty	-
BAT_I_Prev	unsigned int	Previous battery sample current	10mA
MPPT_CHG_DeltaBat_Imin	unsigned char	Maximum battery charging current ripple value	10mA
Duty	unsigned char	Duty value	-
Dutysize	signed char	Step size of the duty adjustment- initial value is 1	-
Mppt_process	unsigned char	MPPT process - initial value is 0	-
MPPT_CHG_BATI_Max	unsigned int	Maximum battery charging current	10mA
pv_V	unsigned int	Solar panel voltage	10mV
Bat_I	unsigned int	Battery current	10mA
Bat_V	unsigned int	Battery voltage	10mV

Table 5

4. Subroutine Description

There is a subroutine in the MPPT library which is called during battery charging.

Function Name	unsigned char Fun_MPPT_PNO_F_FUNC(u8 Chgmode)					
Function	MPPT algorithm library function					
Input	Unsigned char Chgmode :					
	0x00 : disable; 0x01 : enable					
Output	Return unsigned char Value : 0x00 : error, external charging power supply should be cut off; 0x01 : Normal Mode, Duty is adjustable 0x80 : OCP or OVP					
Description	This function is called during the MPPT charging for charging power adjustment.					

Table 6

Test Data

Voltage and current measurement point description.

- Input voltage: photovoltaic panel positive terminal on the PCB board PV+
- Input current: the sampling resistor at the photovoltaic panel negative terminal on the PCB board – PV
- Output voltage: lithium battery positive terminal on the PCB board BAT+
- Output current: the sampling resistor at the lithium battery negative terminal on the PCB board BAT-
- 1. Charging power and efficiency simulate a 20W@6V, 3.33A photovoltaic panel with a maximum output power of 10W

	Input Voltage (V)	Input Current (A)	Input Power (W)	Output Voltage (V)	Output Current (A)	Output Power (W)	Charging Efficiency (%)	Energy Utilisation (%)
Buck Direct Charging	4.22	1.853	7.82	3.285	1.853	6.08	77.8	78.2
MPPT Charging	6.0	1.65	9.9	3.348	2.75	9.2	92.9	98.05

Table	8

2. Charging power and efficiency - simulate a 20W@6V, 3.33A photovoltaic panel with a maximum output power of 20W

	Input Voltage (V)	Input Current (A)	Input Power (W)	Output Voltage (V)	Output Current (A)	Output Power (W)	Charging Efficiency (%)	Energy Utilisation (%)
Buck Direct Charging	4.71	3.67	17.28	3.38	3.67	12.4	71.2	86.4
MPPT Charging	6.0	3.3	19.8	3.4	5	17	85.85	99

Table 9

3. Charging power and efficiency - simulate a 10W@6V, 1.66A photovoltaic panel with a maximum output power of 5W

	Input Voltage (V)	Input Current (A)	Input Power (W)	Output Voltage (V)	Output Current (A)	Output Power (W)	Charging Efficiency (%)	Energy Utilisation (%)
Buck Direct Charging	3.984	0.93	3.705	3.27	0.93	3.04	82.1	74.1
MPPT Charging	6	0.82	4.92	3.29	1.4	4.606	93.6	98.4

Table 10

maximum output power of 10W											
	Input Voltage (V)	Input Current (A)	Input Power (W)	Output Voltage (V)	Output Current (A)	Output Power (W)	Charging Efficiency (%)	Energy Utilisation (%)			
Buck Direct Charging	4.27	1.854	7.916	3.30	1.854	6.12	77.28	79.16			
MPPT Charging	6	1.647	9.882	3.345	2.75	9.198	93.08	98.82			

9										
	92.0			91.6	91.4					
9	91.0		00.7	\square		90.4				
9	90.0		89.7				89.6			
	89.0					\sim	\rightarrow			
Buck efficiency %	88.0	87.5			—			87.6		
sienc.	87.0									
effic	86.0			<u> </u>					85.2	
nck %	85.0									
ш ;	84.0		—							82.9
8	83.0	/								
8	82.0									
8	81.0									
8	80.0									
		0.5	1	1.5	2	2.5	3	4	5	6
				5V	Chargin	g Curre	nt/A	-8V		

- Table 11
- 5. DC-DC conversion efficiency: input voltage ranges from 5V to 8V, output voltage is 3V. The curves in the following figure show the relationship between the buck efficiency from 5V~8V to 3V and the charging current. The curve values shown in the figure correspond to the efficiency values of stepping down the voltage from 5V to 3V.

4. Charging power and efficiency - simulate a 10W@6V, 1.66A photovoltaic panel with a

Figure 14

Solution Comparison

	Holtek Solution	Traditional Solutions
Function	Solar charging, MPPT power tracking, higher power	Solar charging, low voltage direct charging, low PWM charging power
Program	High energy utilisation	Low energy utilisation
Cost	MCU integrates over current, over/under voltage protection functions	Need additional protection circuits

Table 12

Conclusion

This article has introduced the Holtek MPPT charging solar light solution which uses a combination of the BP45FH4NB master control MCU and the BM22S4221-1 module. The BP45FH4NB provides two level shifted output pins which can be used to directly drive the high-side PMOS and low-side NMOS transistors. The MCU also provides over current, over/under voltage protection functions for battery charging and discharging safety. These features when combined with the BM22S4221-1 module can form a complete MPPT charging solar light solution. The BM22S4221-1 module has the advantages of low power consumption, a UART communication interface as well as an internal software filtering algorithm to improve the reliability of the PIR sensor and implement a sensitive human body sensing function.

Reference Material

Reference files: BP45FH4NB, BA45F6622, BM22S4221-1 datasheets.

For BM22S4221-1 information, contact Anchip technical service engineer.

For more details, refer to Holtek website: www.holtek.com

Versions and Modification Information

Date	Author	Issue	Modification Information
2022.01.14	劉暉楊	V1.10	Change the master control MCU to BP45FH4NB
2021.01.30	譚林祥	V1.00	First Version

Disclaimer

All information, trademarks, logos, graphics, videos, audio clips, links and other items appearing on this website ('Information') are for reference only and is subject to change at any time without prior notice and at the discretion of Holtek Semiconductor Inc. and its related companies (hereinafter 'Holtek', 'the company', 'us', 'we' or 'our'). Whilst Holtek endeavors to ensure the accuracy of the Information on this website, no express or implied warranty is given by Holtek to the accuracy of the Information. Holtek will bear no responsibility for any incorrectness or leakage. Holtek shall not be liable for any damages (including but not limited to computer virus, system problems or data loss) whatsoever arising in using or in connection with the use of this website by any party. There may be links in this area, which allow you to visit the websites of other companies. These websites are not controlled by Holtek. Holtek will bear no responsibility and no guarantee to whatsoever Information displayed at such sites. Hyperlinks to other websites are at your own risk.

Limitation of Liability

In any case, the Company has no need to take responsibility for any loss or damage caused when anyone visits the website directly or indirectly and uses the contents, information or service on the website.

Governing Law

This disclaimer is subjected to the laws of the Republic of China and under the jurisdiction of the Court of the Republic of China.

Update of Disclaimer

Holtek reserves the right to update the Disclaimer at any time with or without prior notice, all changes are effective immediately upon posting to the website.