

August 2024

HI-1592 Radiation-Hard MIL-STD-1553 3.3V Dual Transceiver

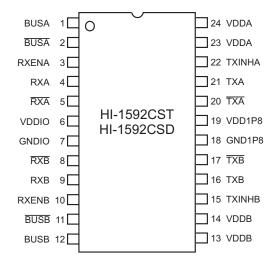
DESCRIPTION

The HI-1592 is a radiation-hardened, hermetically packaged MIL-STD-1553 dual transceiver designed for use in high reliability MIL-STD-1553 applications, such as launch vehicles, high altitude aircraft and space. As aircraft fly at higher altitudes or in space they become more susceptible to exposure to cosmic rays, resulting in effects such as single-event transient (SET), single-event functional interrupt (SEFI), single event latch-up (SEL) and single event burnout (SEB), any of which could result in degradation or failure of electronic equipment. To that end, electronic equipment designed to fly in these environments needs some level of latch-up immunity or radiation hardness assurance (RHA) against the effects of cosmic rays.

The HI-1592 is designed to provide latch-up immunity up to an LET of 67.7 MeV-cm²/mg and an RHA total ionizing dose (TID) of 100 krad(Si). It is ideal for launch vehicle and high-altitude aircraft applications utilizing MIL-STD-1553 data bus communication.

The device also features 1.8V, 2.5V and 3.3V compatible digital I/O, making it easier to interface with a broader range of FPGAs and controllers.

The transmitter takes complementary CMOS / TTL Manchester II bi-phase data and converts it to differential voltages suitable for driving the bus isolation transformer. Separate transmitter inhibit control signals are provided for each bus. The receiver section of the each bus converts the 1553 bus bi-phase analog signals to complementary CMOS / TTL data suitable for input to a Manchester decoder. Each receiver has a separate enable input, which forces the receiver outputs to the bus idle state (logic "0") when low.

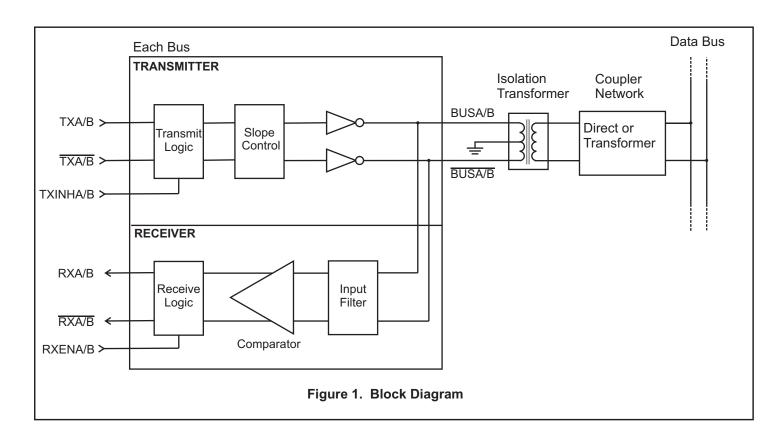

APPLICATIONS

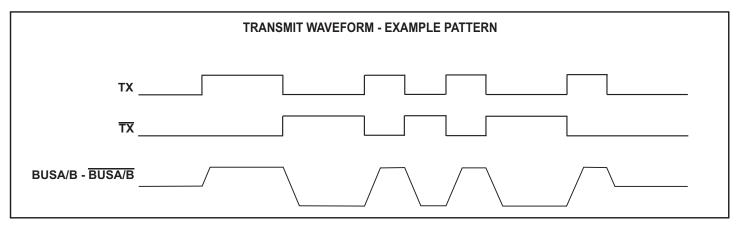
- Launch Vehicles
- High altitude aircraft MIL-STD-1553 Terminals
- Low-orbit satellites
- Flight Control and Monitoring
- ECCM Interfaces
- Radar Systems

FEATURES

- Robust Silicon-On-Insulator (SOI) CMOS technology
- RHA Total Ionizing Dose (TID)
 - ° 100 krad(Si) High Dose Rate
- Single-Event Effect (SEE) hardness
 - SET, SEFI, SEB and SEL characterized up to 67.7 MeV-cm²/mg
- MIL-PRF-38535 compliant
- 1.8V, 2.5V and 3.3V compatible digital I/O
- Extended temperature range with optional burn-in

PIN CONFIGURATION


24-Pin Ceramic SOIC


PIN DESCRIPTIONS

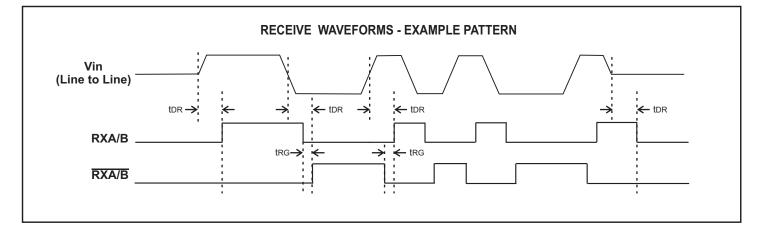

PIN	SYMBOL	FUNCTION	DESCRIPTION	
1	BUSA	analog output	MIL-STD-1553 bus driver A, positive signal	
2	BUSA	analog output	MIL-STD-1553 bus driver A, negative signal	
3	RXENA	digital input	Receiver A enable. If low, forces RXA and RXA low	Internal pull-up resistor
4	RXA	digital output	Receiver A output, non-inverted	
5	RXA	digital output	Receiver A output, inverted	
6	VDDIO	power supply	Power for digital I/O. Supports 1.8V, 2.5V or 3.3V.	
7	GNDIO	power supply	Ground for VDDIO supply	
8	RXB	digital output	Receiver B output, inverted	
9	RXB	digital output	Receiver B output, non-inverted	
10	RXENB	digital input	Receiver B enable. If low, forces RXB and RXB low	Internal pull-up resistor
11	BUSB	analog output	MIL-STD-1553 bus driver B, negative signal	
12	BUSB	analog output	MIL-STD-1553 bus driver B, positive signal	
13	VDDB	power supply	+3.3 volt power for transceiver B	
14	VDDB	power supply	+3.3 volt power for transceiver B	
15	TXINHB	digital input	Transmit inhibit, bus B. If high BUSB, BUSB disabled.	Internal pull-down resistor
16	ТХВ	digital input	Transmitter B digital data input, non-inverted	Internal pull-down resistor
17	TXB	digital input	Transmitter B digital data input, inverted	Internal pull-down resistor
18	GND1P8	power supply	Ground for VDD1P8 supply	
19	VDD1P8	power supply	Power for 1.8V digital core	
20	TXA	digital input	Transmitter A digital data input, inverted	Internal pull-down resistor
21	TXA	digital input	Transmitter A digital data input, non-inverted	Internal pull-down resistor
22	TXINHA	digital input	Transmit inhibit, bus A. If high BUSA, BUSA disabled.	Internal pull-down resistor
23	VDDA	power supply	+3.3 volt power for transceiver A	
24	VDDA	power supply	+3.3 volt power for transceiver A	

Table 1. Pin Descriptions

HI-1592

FUNCTIONAL DESCRIPTION

The HI-1592 dual MIL-STD-1553 bus transceiver contains a differential voltage source driver and a differential analog bus receiver for each bus. It is designed for applications using a MIL-STD-1553B communications bus. The device generates a trapezoidal output waveform during transmission.

TRANSMITTER

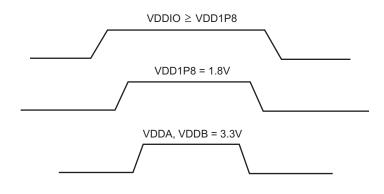
Data input to the HI-1592 transmitter is a pair of complementary CMOS inputs TXA/B and TXA/B. The transmitter accepts Manchester II bi-phase data and converts it to differential analog voltages on BUSA and BUSA, or BUSB and BUSB The transceiver outputs are either direct- or transformer-coupled to the MIL-STD-1553 data bus. Both coupling methods produce a nominal voltage on the bus of 7.5 Volts peak to peak.

The transmitter is automatically inhibited and placed in the high impedance state when TXA/B and $\overline{TXA/B}$ are both driven to the same logic state. A bus transmitter is also forced to the high impedance state when logic "1" is applied at the TXINHA (or TXINHB) transmit inhibit input, regardless of the TXA/B and $\overline{TXA/B}$ input condition.

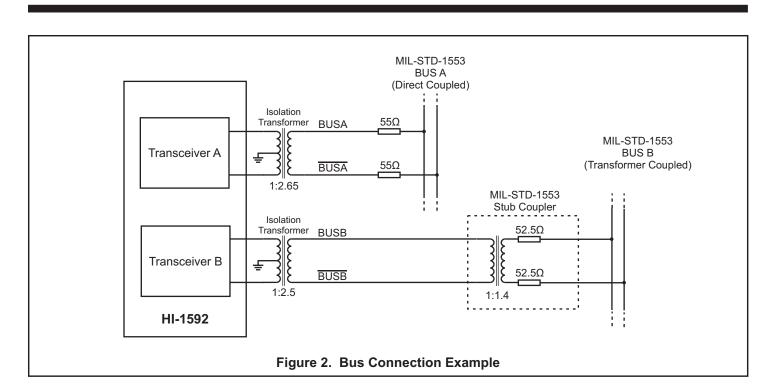
RECEIVER

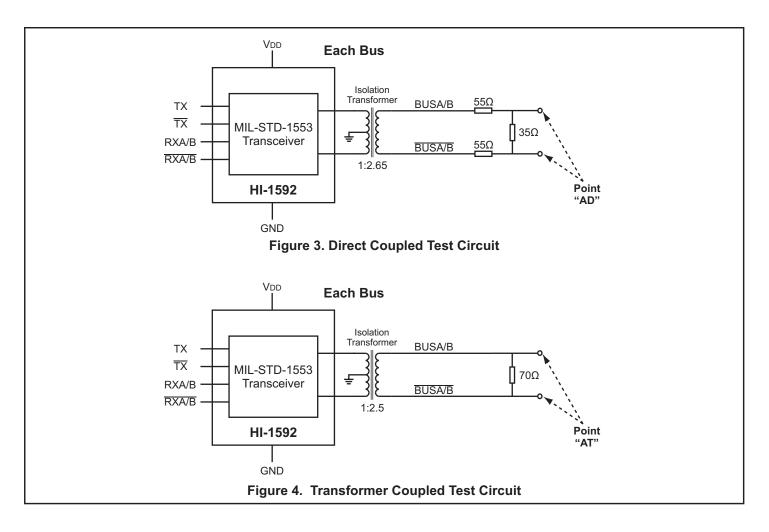
The receiver accepts bi-phase differential analog signals from the MIL-STD-1553 bus through the same direct- or transformer-coupled interface at the BUSA and $\overline{\text{BUSA}}$ (or BUSB and $\overline{\text{BUSB}}$) pins. The receiver differential input stage drives a filter and threshold comparator to produce CMOS data at the RXA and $\overline{\text{RXA}}$ (or RXB and $\overline{\text{RXB}}$) output pins.

MIL-STD-1553 BUS INTERFACE


A direct-coupled interface (see Figure 2) uses a 1:2.65 turns-ratio isolation transformer and two 55 ohm isolation resistors between the transformer and the bus. The primary center-tap of the isolation transformer must be connected to GND.

In a transformer-coupled interface (see Figure 2), the transceiver is connected to a 1:2.5 turns-ratio isolation transformer which is connected to the main bus using a 1:1.4 turns-ratio coupling transformer. The transformer coupled method also requires two coupling resistors equal to 75% of the bus characteristic impedance (Zo) between the coupling transformer and the bus.


Figure 3 and Figure 4 show test circuits for measuring electrical characteristics of both direct- and transformer-coupled interfaces respectively. (See electrical characteristics on the following pages).


Power Sequencing

To prevent excessive current during power-on and power-off, it is recommended to power up VDDIO first, followed by VDD1P8 and finally VDDA, VDDB. This guarantees that the Line Driver inputs are in the correct state during power-up transients. For proper operation, VDDIO \geq VDD1P8.

HI-1592

ABSOLUTE MAXIMUM RATINGS

Supply voltages (VDDA or VDDB)	-0.3 V to +5 V
Logic input voltage range	-0.3 V dc to +3.6 V
Voltage at BUSA/B or BUSA/B pins	+/-7 V
Vddio - Vdd1p8	0.5V
Reflow Solder Temperature	260°C
Junction Temperature	175°C
Storage Temperature	-65°C to +150°C

RECOMMENDED OPERATING CONDITIONS

Supply Voltages

VDDA or VDDB	3.3V ±5%
Vddio	1.8V to 3.3V ± 10%
VDD1P8	1.8V ±10%
$VDDIO \geq VDD1P8$	

Temperature Range

Industrial	40°C to +85°C
Hi-Temp	55°C to +125°C

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

DC ELECTRICAL CHARACTERISTICS

VDDA, VDDB = 3.15 V to 3.45V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	ТҮР	MAX	UNITS
Transceiver Supply Voltages	Vdd		3.14	3.30	3.46	V
	ICC1	Not Transmitting			420	μA
Total Supply Current	Icc2	Transmit one bus @ 50% duty cycle, 78 Ω resistive load		380	410	mA
	Іссз	Transmit one bus @ 100% duty cycle, 78 Ω resistive load		700	750	mA
Power Dissipation	PD1	Not Transmitting			1.5	mW
	PD2	Transmit one bus @ 100% duty cycle, 78 Ω resistive load		1.0	1.2	W
Logic Supply Voltage	VDD1P8		1.65	1.80	1.95	V
Logic Supply Current	IDD1P8				10.0	mA
		1.8V Digital I/O	1.65	1.80	1.95	V
Digital I/O Supply Voltage	Vddio	2.5V Digital I/O	2.3	2.5	2.7	V
		3.3V Digital I/O	3.0	3.3	3.6	V
Digital I/O Supply Current	Ισριο	Not Transmitting			350	μA
Min. Input Voltage (High)	Vін	Digital inputs, VDDIO = VDD = 3.3V	70%			Vdd
Max. Input Voltage (Low)	VIL	Digital inputs, VDDIO = VDD = 3.3V			30%	Vdd
Min. Output Voltage (High)	Vон	louт = -1.0mA, Digital outputs VDDIO = VDD = 3.3V	90%			Vdd
Max. Output Voltage (Low)	Vol	louτ = 1.0mA, Digital outputs VDDIO = VDD = 3.3V			10%	Vdd
Min. Input Voltage (High)	Viн	Digital inputs, VDDIO = 2.5V, VDD = 3.3V	1.7			V
Max. Input Voltage (Low)	VIL	Digital inputs, VDDIO = 2.5V, VDD = 3.3V			0.7	V
Min. Output Voltage (High)	Vон	Iouτ = -1.0mA, Digital outputs VDDIO = 2.5V, VDD = 3.3V	2.3			V
Max. Output Voltage (Low)	Vol	Iout = 1.0mA, Digital outputs VDDIO = 2.5V, VDD = 3.3V			0.2	V

DC ELECTRICAL CHARACTERISTICS (cont.)

VDDA, VDDB = 3.15 V to 3.45V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	ТҮР	MAX	UNITS
Min. Input Voltage (High)	Viн	Digital inputs, VDDIO = 1.8V, VDD = 3.3V	1.17			V
Max. Input Voltage (Low)	VIL	Digital inputs, VDDIO = 1.8V, VDD = 3.3V			0.63	V
Min. Output Voltage (High)	Vон	louτ = -1.0mA, Digital outputs VDDIO = 1.8V, VDD = 3.3V	1.35			V
Max. Output Voltage (Low)	Vol	Iour = 1.0mA, Digital outputs VDDIO = 1.8V, VDD = 3.3V			0.45	V
Min. Input Current (High)	Ін	Digital inputs, VDDIO = 3.6V			50	μΑ
Max. Input Current (Low)	١L	Digital inputs, VDDIO = 3.6V	-50			μΑ
RECEIVER(Measured at Point "Ad" in Figure 3 u	inless otherv	vise specified)			1	1
Input resistance	Rin	Differential (at chip pins)	5			kOhm
Input capacitance	CIN	Differential			5	pF
Input common mode voltage	Vicм		-10.0		10.0	V-pk
Threshold Voltage - Direct-coupled Detect	Vthd	1 MHZ Trapezoidal Waveform Measured at Point "Ap" in Figure 3 RXA/B, RXA/B pulse width > 85 ns	1.15			Vp-p
No Detect	VTHND	No pulse at RXA/B, RXA/B			0.28	Vp-p
Theshold Voltage - Transformer-coupled Detect	Vthd	1 MHZ Trapezoidal Waveform Measured at Point "Ατ" in Figure 4 RXA/B, RXA/B pulse width > 85 ns	0.75			Vp-p
No Detect	VTHND	No pulse at RXA/B, RXA/B			0.325	Vp-p
TRANSMITTER(Measured at Point "AD" in Figur	e 3 unless o	therwise specified)				
Output Voltage Direct coupled	Vout	35 ohm load (Measured at Point "A o " in Figure 3)	6.0		9.0	Vp-p
Transformer coupled	Vout	70 ohm load (Measured at Point "Ατ" in Figure 4)	18.0		27.0	Vp-p
Output Noise	Von	Differential, inhibited			10.0	mVp-p
Output Dynamic Offset Voltage Direct coupled	Vdyn	35 ohm load (Measured at Point "A b " in Figure 3)	-90		90	mV
Transformer coupled	Vdyn	70 ohm load (Measured at Point "Α τ " in Figure 4)	-250		250	mV
Output Capacitance	Соит	1 MHz sine wave			15	pF

AC ELECTRICAL CHARACTERISTICS

VDDA, VDDB = 3.15 V to 3.45 V, GND = 0V, TA =Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
RECEIVER (Measured a	at Point "Ат" i	n Figure 4 unless otherwise specified)				
Receiver Delay	tDR	From input zero crossing to RXA/B			450	ns
		or RXA/B				
Receiver gap time	trg	Spacing between RXA/B	90		365	ns
		and RXA/B pulses.				
		1 MHz sine wave applied at point "AT" Figure 4,				
		amplitude range 0.86 Vp-p to 27.0Vp-p				
Receiver Enable Delay	tren	From RXENA/B rising or falling edge to		40	ns	
		RXA/B or RXA/B			40	113
TRANSMITTER (Measured	at Point "AT" i	in Figure 4)				
Driver Delay	tdт	TXA/B, TXA/B to BUSA/BUSB, BUSA/BUSB			150	ns
Rise time	tr	70 ohm load	100	150	300	ns
Fall Time	tf	70 ohm load	100	150	300	ns
Inhibit Delay	tDI-H	Inhibited output			100	ns
	tdi-L	Active output			150	ns

ORDERING INFORMATION

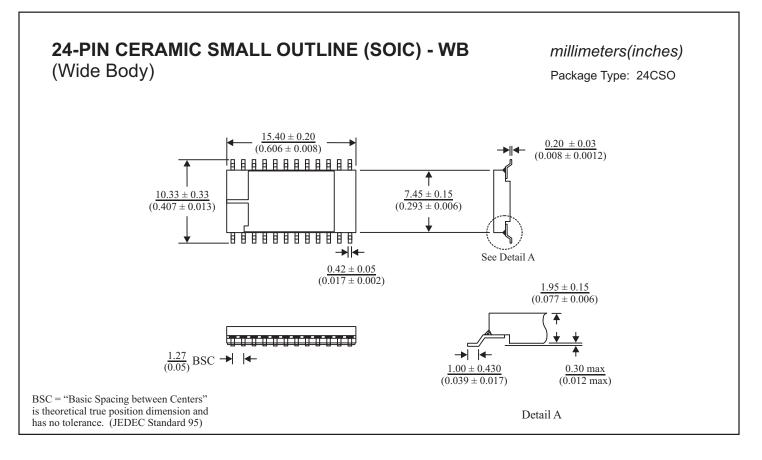
HI - <u>1592CS x</u>

PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN	MIL-PRF-38535 COMPLIANT	100% PIND	LEAD FINISH
Т	-55°C TO +125°C	т	NO	NO	NO	Gold (Pb-free, RoHS complian
D	-55°C TO +125°C	D	YES	YES, QML-Q	YES	Tin / Lead (Sn63 / Pb37) Solde

NUMBER	DESCRIPTION
1592CS	24 PIN CERAMIC WIDE BODY SOIC (24CSO)

RECOMMENDED TRANSFORMERS

The HI-1592 transceiver has been characterized for compliance with the electrical requirements of MIL-STD-1553 when used with the following transformers. Holt


recommends Premier Magnetics parts as offering the best combination of electrical performance, low cost and small footprint.

MANUFACTURER	PART NUMBER	APPLICATION	TURNS RATIO	DIMENSIONS
Premier Magnetics	PM-DB2791S	Isolation	1:2.5	.400 x .400 x .185 inches
Premier Magnetics	PM-DB2796S	Isolation	1:2.65	.400 x .400 x .185 inches
Premier Magnetics	PM-DB2702	Stub coupling	1:1.4	.625 x .625 x .250 inches

REVISION HISTORY

Document	Rev.	Date	Description of Change
DS1592	New	08/22/2024	Initial Release.

HOLT Z

