PERMENORM 5000 H2 / V5

Strip material

COMPOSITION (in wt%)

47.5 Ni – bal. Fe IEC 60404-8-6 E31 DIN 17405 (1979) RNi8 / RNi12 ASTM 753-21 Alloy 2

PRODUCT DESCRIPTION

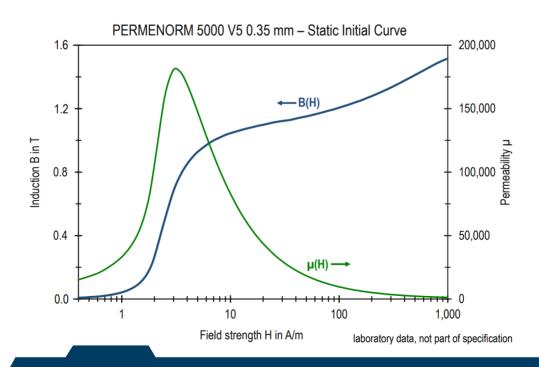
The family of PERMENORM® 5000 includes the two complementary strip materials PERMENORM 5000 H2 and PERMENORM 5000 V5 providing high saturation magnetization and low magnetic coercivity. After final annealing PERMENORM 5000 H2 possesses a semi-isotropic coarse grain structure with high permeabilities which, among others, finds application in laminated transformer cores for thicknesses below 0.2 mm (transformer grade).

PERMENORM 5000 V5 is an alloy with a more closely controlled purity for improved magnetic properties. Through a tailored fabrication path it exhibits an isotropic fine grain structure after annealing with advantages for use in rotating laminations and other applications with dynamic magnetization changes (rotor grade).

MAIN PROPERTIES

- Saturation induction $J_S = 1.55 T$
- Coercivity H_C = 3 A/m*
- Max. permeability $\mu_{max} = 150,000 180,000*$

TYPICAL APPLICATIONS


PERMENORM 5000 H2: Toroidal and laminated cores for e.g. current transformers and storage chokes; magnetic shielding

PERMENORM 5000 V5: RCCB-Relays, laminated stacks for high freq. motors, magnetic shielding, current and positioning sensors

FORMS OF SUPPLY

- Strip material, thickness 0.025 2 mm, width ≤ 305 mm
- Stamped parts, laminations, and laminated assemblies

Other dimensions and tolerances upon request. For solid material and wires, see brochure PERMENORM 5000 H2 solid material.

^{*}typical for thickness 0.35 mm, data for other dimensions upon request

STRIP MATERIAL 0.35 mm - TYPICAL VALUES

PHYSICAL PROPERTIES	Unit			
Mass density ρ	g/cm³	8.25		
Thermal conductivity (25 °C) λ	W/(m·K)	18 – 21		
Thermal expansion coefficient (20 $-$ 100 °C) α	10 ⁻⁶ /K	10		
Electrical resistivity ρ_e	μΩm	0.45		
STATIC MAGNETIC PROPERTIES		5000 V5		5000 H2
Coercivity H _C	A/m	2.5		3
Saturation polarization J_S	Т	1.55		1.55
Saturation magnetization B_S at $H = 40 \text{ kA/m}$	Т	1.60		1.60
Maximum permeability μ _{max}		180,000		150,000
Magnetostriction constant λ_{S}	ppm	+ 25		+ 25
Curie temperature T _C	°C	440		440
AFTER FINAL HEAT TREATMENT p _{Fe} 1.0 T 50 Hz	W/kg	0.10 mm 0.2	0.20 mm 0.2	0.35 mm 0.3
р _{Fe} 1.0 Т 400 Hz	W/kg	2.6	4.7	11
p _{Fe} 1.0 T 1,000 Hz	W/kg	9.7	25	61
p _{Fe} 1.2 T 50 Hz	W/kg	0.3	0.3	0.4
p _{Fe} 1.2 T 400 Hz	W/kg	4.0	7.6	18
p _{Fe} 1.2 T 1,000 Hz	W/kg	15	40	103
MECHANICAL PROPERTIES (finally heat treated)				
Young's modulus E	GPa	140		
Yield strength R _{p0.2}	MPa	140		
Hardness	HV	105		
MECHANICAL PROPERTIES (delivery state)		cold rolled soft annealed		
Yield strength R _{p0.2}	MPa	975 250		
Tensile strength R _m	MPa	100		500

MECHANICAL PROPERTIES (delivery state)		cold rolled	soft annealed
Yield strength R _{p0.2}	MPa	975	250
Tensile strength R _m	MPa	100	500
Elongation A	%	1	30
Hardness	HV	280	140

FINAL HEAT TREATMENT		
Atmosphere		hydrogen
Temperature	°C	1,150
Annealing time	h	5
Cooling rate	K/h	100 – 300

Published by VACUUMSCHMELZE GmbH & Co. KG, Hanau, March 2024 © VACUUMSCHMELZE GmbH & Co. KG 2023. All rights reserved. ® is a Registered Trademark of VACUUMSCHMELZE GmbH & Co. KG

