VITROBRAZE AMORPHOUS BRAZING FOILS

ADVANCED MATERIALS – THE KEY TO PROGRESS

THE COMPANY VACUUMSCHMELZE

We are a global company with our headquarter in Hanau, Germany. We currently have over 4300 employees who are spread over production and sales locations in more than 40 countries on every continent generating annual sales of approximately EUR 400 million.

Contents

1. Introduction	page 3
2. Applications of VITROBRAZE	page 4
3. Advantages of VITROBRAZE	page 5
4. Physical Properties	page 6
5. Specification Cross Reference Charts	page 7

Advanced Materials – The Key to Progress

VACUUMSCHMELZE is one of the world's leading companies in the field of development, production and application know-how of magnetic and special materials. VAC's research and development is dedicated to ensuring technology leadership through close contact to our customers.

VACUUM INDUCTION MELTING

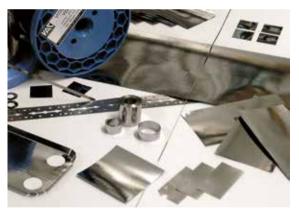
VAC was the first company to introduce the melting of alloys under vacuum on an industrial scale, producing Ni, Fe, Co and Cr alloys with reduced levels of C,N,O and H, as well as low levels of non metallic inclusions (oxides, nitrides and carbides).

The high purity and homogeneity associated with tight tolerances of chemical composition are fundamental for the production of alloys with superior soft magnetic or other unique physical properties, including the production of high grade Rare Earth permanent magnets.

MATERIALS DESIGN

CERTIFICATE

All Distance of the local distance of the lo


Our ability to tailor the composition and all further processing steps according to our proprietary know-how enables us to design alloys with unique properties for specific customer needs. Our unique material production routes, such as conventional hot and cold rolling, powder metallurgy or rapid solidification, start with in-house melting under vacuum conditions.

One of the first vacuum melting furnaces, approx. 1923

VACUUMSCHMELZE has outstanding knowledge of the material properties as well as the possibilities for processing them. Our expertise in material design and processing combined with our knowledge of markets and applications secures the development of advanced materials. Our products and technologies are driven by customer requirements. We work with our customers to define material-based solutions that perfectly match their requirements.

CERTIFICATE OF N

9

A variety of different types VITROBRAZE brazing foils and stamped or cut preforms

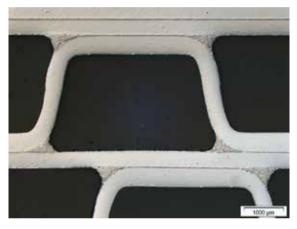
The quality system at VACUUMSCHMELZE is certified according to DIN EN ISO 9001:2015, for the requirements of the automotive industry to IATF 16949:2016, and for the requirements of the aerospace industry to DIN ISO 9100:2018. Furthermore, VACUUMSCHMELZE has implemented and maintains an environmental management system according to ISO 14001:2015.

QUALITY ASSURANCE SYSTEM

VITROBRAZE

By considering the 5000 years of brazing history, the nickel based filler metals are a very young group of materials. The first Nickel-BFM (Brazing Filler Metal) was developed for joining parts of jet engines in 1947. This new group of BFMs and the according brazing procedures were therefore continuously improved in the following decades. Modern alloys of this BFM group are mainly optimized for corrosion resistance and joint strength.

Our amorphous VITROBRAZE® filler metal foils are produced by the Rapid Solidification Technology which is also used for our soft magnetic VITROVAC® and VITROPERM® products. The production of amorphous metals requires a manufacturing technology that operates on the basis of the extremely fast cooling rates, which is known as rapid solidification. Amorphous structures are characterized by the absence of a crystal lattice or a long range order. With this random, spatially uniform arrangement of the constituent atoms, their structure is similar to that of liquids.



VITROBRAZE for EGR cooler production

The nature of this production process is the reason why amorphous alloys are offered in the form of thin, ductile metal foils. Subsequently, tapes, parts and preforms can be made by e.g. slitting, cutting, stamping and etching.

APPLICATIONS OF VITROBRAZE

Nickel filler metals are used for applications where corrosion, oxidation and heat resistance are necessary. A primary benefit is the ability to endure high-temperature service, even in moderately aggressive environments. They are also suitable for sub-zero applications. Nickel brazing foils are used for brazing heat exchangers, EGR coolers, metallic catalysts, food handling components, medical devices, as well as marine and automotive applications. Brazing joints made with VITROBRAZE show a consistence performance with non-porous and leak free joints. Nickel filler metals can be used for brazing low carbon and stainless steels, nickel and nickel alloys, cobalt and cobalt alloys, and in some cases for special metals and their alloys.

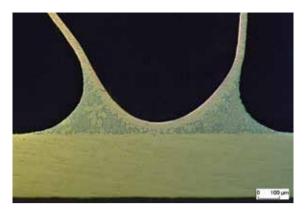
A micrograph of the cross section of a stainless steel EGR cooler brazed with VITROBRAZE VZ2170

Nickel-Iron filler metals are recently developed brazing alloys for joining stainless steel. Primarily, these alloys are optimised for the mass production of heat exchangers made of stainless steel, for example EGR coolers.

These alloys are lower in cost compared to amorphous nickel filler metals due to their lower nickel content.

Joint performance and corrosion resistance are comparable to the well known high-chromium nickel brazing alloys.

® registered trademarks of VACUUMSCHMELZE GMBH & CO. KG


Copper filler metal foils are very low melting point brazing alloys. They are mainly used for a fluxfree brazing of copper and its alloys. These filler metals contain no cadmium or lead. Major applications for these brazing alloys are the joining of copper and brass heat exchangers for automotive and industrial applications. In some cases it is possible to replace expensive silver containing brazing alloys with VITROBRAZE copper and nickel alloys.

Advantages of VITROBRAZE

One reason for the superiority of VITROBRAZE products is their amorphous structure. Amorphous materials are compositionally much more uniform and they melt over a narrow temperature range under transient heating. This is a consequence of the shorter distances over which atoms of the different elements have to diffuse in order to form a uniform liquid phase. The resultant instant melting, and their superior flow characteristic, is only one of the important features of VITROBRAZE. The absence of the residual organic solvent bases evident in powder paste or tapes correspondingly eliminates soot formation and furnace fouling. The low level of gaseous impurities in VITROBRAZE, due to the specific characteristics of its production technology, is an attractive feature for vacuum furnace brazing.

A fully brazed exhaust gas recirculation cooler using VITROBRAZE amorphous brazing foils

A micrograph of a tube-fin joint of a copper-based heat exchanger brazed with VITROBRAZE VZ2255

VITROBRAZE nickel and iron based products have no limitation in shelf life. They are available as strip with a width from 2.5 mm to 200 mm and a thickness from $20\,\mu$ m up to $50\,\mu$ m. Preforms can be easily produced by using punch and die, cutting and slitting, photochemical etching and other methods. It is simple to use foils and preforms in automated production and assembling steps.

The use of foils and preforms reduces waste and enhances manufacturing efficiency. Drying and evaporation operations, which are required with powder or paste and tape forms are not necessary. The optimal amount of brazing material can be easily applied to the component, and in just one heating cycle VITROBRAZE creates uniform braze joints with an outstanding quality.

A plate heat exchanger using VITROBRAZE amorphous brazing foil preforms

PHYSICAL PROPERTIES OF VITROBRAZE ALLOYS

NICKEL BASED Nominal composition (wt. %)					Specification Cross Reference Chart					
VAC - Alloy	Ni	Fe	Cr	Мо	Si	В	Р	DIN En ISO 17672	AWS A5.8	AMS
VZ2111	Bal. (75.5)	4.2	13.0	_	4.5	2.8	-	1.)	1.)	1.)
VZ2120	Bal. (82.4)	3.0	7.0	_	4.5	3.1	—	Ni 620	BNi-2	4777
VZ2133	Bal. (92.4)	_	—	-	4.5	3.1	—	Ni 630	BNi-3	4778
VZ2150	Bal. (73.4)	_	18.2	_	7.3	1.15	—	2.)	2.)	2.)
VZ2152	Bal. (72.5)	_	19.0	—	7.25	1.25	—	Ni 660	BNi-5a	2.)
VZ2154	Bal. (76.4)	_	15.0	_	7.25	1.35	_	Ni 661	BNi-5b	-
VZ2170	Bal. (70.0)	_	21.0	_	0.5	0.5	8.0	_	-	-
VZ2177	Bal. (67.0)	_	25.0	_	1.5	0.5	6.0	_	-	-
VZ2190	Bal. (81.3)	_	15.0	_	_	3.7	_	Ni 612	BNi-9	—

1.) FOIL ALTERNATIVE TO NI 610, BNI-1A, AMS 4776

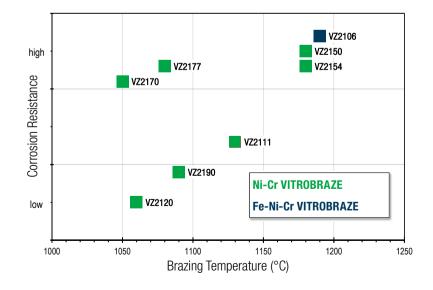
2.) FOIL ALTERNATIVE TO NI 650, BNI-5, AMS 4782

IRON-NICKEL BASED

Nominal composition (wt. %)

VAC - Alloy	Fe	Ni	Cr	Мо	Cu	Si	В	Р
VZ2106	35.0	Bal. (43.6)	11.0	1.5	1.0	6.4	1.5	_

COPPER BASED


Nominal composition (wt. %)

VAC - Alloy	Cu	Ni	Sn	Р	Zn
VZ2250	Bal. (77.4)	7.0	9.3	6.3	—
VZ2255	Bal. (76.2)	7.0	9.3	6.5	1.0

SPECIFICATION CROSS REFERENCE CHART

VAC – Alloy	Solidus	Liquidus	Recommended	Amorphous density
Vitrobraze	temperature	temperature	brazing temperature	
	°C (°F)	°C (°F)	°C (°F)	g/cm ³ (lb/in ³)
VZ2106	1044	1154	1170 – 1220	7.51
	(1910)	(2110)	(2140 – 2230)	(0.271)
VZ2111	970	1100	1130 - 1200	7.73
	(1780)	(2015)	(2065 - 2190)	(0.278)
VZ2120	970	1025	1030 - 1180	7.82
	(1780)	(1875)	(1885 - 2155)	(0.283)
VZ2133	980	1040	1060 - 1180	7.96
	(1795)	(1905)	(1940 - 2155)	(0.288)
VZ2150	1040	1140	1160 - 1200	7.62
	(1905)	(2085)	(2120 - 2190)	(0.275)
VZ2152	1065	1150	1170 - 1200	7.60
	(1950)	(2100)	(2140 - 2190)	(0.274)
VZ2154	1040	1125	1150 - 1200	7.65
	(1900)	(2060)	(2100 - 2190)	(0.276)
VZ2170	880	925	1030 - 1080	7.70
	(1610)	(1695)	(1880 - 1980)	(0.278)
VZ2177	945	1040	1050 – 1120	7.67
	(1740)	(1930)	(1920 – 2050)	(0.277)
VZ2190	1055	1070	1090 - 1200	7.96
	(1930)	(1960)	(1995 - 2190)	(0.288)
VZ2250	600	630	640 - 680	8.25
	(1110)	(1160)	(1180 – 1260)	(0.297)
VZ2255	600	630	640 - 680	8.25
	(1110)	(1160)	(1180 – 1260)	(0.297)

Comparison of the corrosion resistance of brazed VITROBRAZE / AISI 316 L joints towards exhaust gas condensate versus brazing temperature.

VACUUMSCHMELZE GMBH & CO. KG

Grüner Weg 37 D 63450 Hanau / Germany Phone +49 6181 38 0 Fax +49 6181 38 2645 info@vacuumschmelze.com www.vacuumschmelze.com

VACUUMSCHMELZE SINGAPORE PTE LTD

60, Paya Lebar Road Paya Lebar Square #06-16 Singapore 409051 Phone +65 6585 1243 VACSingapore@vacuumschmelze.com

VAC MAGNETICS LLC

2935 Dolphin Drive Suite 103 Elizabethtown, KY 42701 Phone +1 270 769 1333 Fax +1 270 769 3118 info-usa@vacmagnetics.com

VACUUMSCHMELZE CHINA MAGNETICS

Shanghai Sales Office Room 06, 19F Zhongrong Hengrui International Plaza 620 Zhangyang Road, Pudong District Shanghai, PRC 200122 Phone +86 21 58 31 98 37 Fax +86 21 58 31 99 37 vac_china@vacuumschmelze.com

VITROBRAZE EDITION 2019

Published by VACUUMSCHMELZE GmbH & Co. KG, Hanau © VACUUMSCHMELZE GmbH & Co. KG 2019. All rights reserved.

® is a registered Trademark of VACUUMSCHMELZE GmbH & Co. KG

